首页> 外文OA文献 >Ir_urfs_vf: Image Recommendation with User Relevance Feedback Session and Visual Features in Vertical Image Search
【2h】

Ir_urfs_vf: Image Recommendation with User Relevance Feedback Session and Visual Features in Vertical Image Search

机译:Ir_urfs_vf:垂直图像搜索中用户相关反馈会话和视觉特征的图像推荐

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, online shopping has grown exponentially and huge number of images are available online. Hence, it is necessary to recommend various product images to aid the user in effortless and efficient access to the desired products. In this paper, we present image recommendation framework with user relevance feedback session and visual features (IR_URFS_VF) to extract relevant images based on user inputs. User feedback is retrieved from image search history with clicked and un-clicked images. Image features are computed off-line and later used to find relevance between images. The relevance between images is determined by cosine similarity and are ranked based on clicked frequency and similarity score between images. Experiments results show that IR_URFS_VF outperforms CBIR method by providing more relevant ranked images to the user input query.
机译:近年来,在线购物呈指数增长,并且在线提供了大量图像。因此,有必要推荐各种产品图像以帮助用户轻松有效地访问所需产品。在本文中,我们提出了具有用户相关性反馈会话和视觉特征(IR_URFS_VF)的图像推荐框架,以基于用户输入提取相关图像。从带有单击和未单击图像的图像搜索历史中检索用户反馈。图像特征是离线计算的,以后可用于查找图像之间的相关性。图像之间的相关性由余弦相似度确定,并根据图像之间的点击频率和相似度得分进行排序。实验结果表明,IR_URFS_VF通过为用户输入查询提供更相关的排名图像而优于CBIR方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号